摘要: 介紹了國(guó)內(nèi)外幾種典型的光子晶體光纖光柵的制備方法,并分析了光子晶體光纖布喇格光柵、長(zhǎng)周期光柵的模式耦合特性及其光通信及光傳感領(lǐng)域中的應(yīng)用前景。 圖1 PCF的電子掃描顯微鏡圖。(a)~(d)為不同空氣孔填充率及排列分布的空氣硅包層微結(jié)構(gòu)光纖;(e)光子禁帶光纖。
光子晶體光纖(Photonic Crystal Fiber,PCF)是近年來(lái)興起的、十分引人入勝的一種具有微結(jié)構(gòu)的新型硅玻璃光纖。自1996年英國(guó)Bath大學(xué)的Knight等人首次制造了具有光子晶體包層的光纖后,PCF由于具有一系列“奇異”的光學(xué)特性而倍受重視。PCF,又稱微結(jié)構(gòu)光纖(Microstructured Optical Fiber, MOF)或多孔光纖(Holey Fiber, HF),其結(jié)構(gòu)特點(diǎn)是光纖橫截面具有周期性微孔結(jié)構(gòu),如圖1所示。由于PCF包層微孔的大小與波長(zhǎng)數(shù)量級(jí)相同,故可通過(guò)優(yōu)化設(shè)計(jì)微孔大小、填充率以及排列等方式獲得一系列“奇異”的光學(xué)性質(zhì)。與常規(guī)光纖相比,PCF具有如下獨(dú)特的光學(xué)特性:無(wú)窮盡單模傳輸、高非線性、大模場(chǎng)面積、可控色散特性等?;诖耍琍CF不僅有可能成為比常規(guī)光纖更優(yōu)異的光傳輸介質(zhì),而且還可以用來(lái)制作各種前所未有的、功能新奇的光子器件。因此,具有周期結(jié)構(gòu)的PCF已迅速成為光電子領(lǐng)域的前沿?zé)狳c(diǎn)。
近年來(lái),隨著PCF的理論研究逐步深入及其制造技術(shù)和工藝的不斷完善,基于PCF的器件及其應(yīng)用正方興未艾,其中包括基于模式耦合的PCF器件,如濾波器等。因此,在PCF上寫(xiě)入光柵就成為研制基于PCF模式耦合器的基礎(chǔ)。
光纖光柵是光纖導(dǎo)波介質(zhì)中物理結(jié)構(gòu)的周期性分布,是一種新型的光無(wú)源器件,其作用在于改變或控制光波在該區(qū)域的傳播行為與方式。光纖光柵的出現(xiàn),深刻地影響著光纖信息傳輸?shù)脑O(shè)計(jì)及光子器件的研制,它使許多復(fù)雜的全光纖通信和傳感網(wǎng)絡(luò)成為可能,極大地拓寬了光纖技術(shù)的應(yīng)用范圍。目前,高速率、大容量的DWDM通信技術(shù)及高精度、多參數(shù)、分布式傳感技術(shù)的發(fā)展對(duì)FG的性能和靈活性提出了更高的要求,如光柵諧振波長(zhǎng)可以調(diào)諧、包層模耦合可以控制以及對(duì)應(yīng)變和溫度等物理量更加敏感等,從而促使發(fā)展新的、特殊光纖光柵。
PCF和傳統(tǒng)的光纖光柵寫(xiě)入技術(shù)結(jié)合為制造新型的光纖光柵提供了良機(jī)。自1999年B.J.Eggleton等人首次報(bào)道在PCF上寫(xiě)入光纖布喇格光柵(Photonic Fiber Bragg Grating, PFBG)和長(zhǎng)周期光纖光柵(Photonic Long Period Grating, PLPG)以來(lái),光子晶體光纖光柵(Photonic Crystal Fiber Grating, PCFG)的制備方法及理論分析正成為人們研究的熱點(diǎn)。與傳統(tǒng)的光纖光柵相比,PCFG具有如下特性:二維或多維光子晶體、設(shè)計(jì)自由度大(如單芯或多芯、空氣孔可填充介質(zhì)等)、波長(zhǎng)調(diào)諧范圍寬(可達(dá)100nm以上)、可進(jìn)行多參量、多功能感測(cè)等。PCF及PCFG的出現(xiàn),將促進(jìn)并產(chǎn)生全新的性能優(yōu)異的新一代光纖光子器件,由此可能導(dǎo)致現(xiàn)代光纖技術(shù)的新跨越。
轉(zhuǎn)載請(qǐng)注明出處。