激光器,像激光打標機、激光切割機、激光焊接機等等激光設備都離不開他。以前我們探討過:半導體激光器各方面發(fā)展,并多次提到半導體激光器的應用:半導體激光器在太陽能電池領(lǐng)域的應用,今天我們就來看一下近年來大功率半導體激光器的發(fā)展現(xiàn)狀:
高功率和高光束質(zhì)量是材料加工用激光器的兩個基本要求。為了提高大功率半導體激光器的輸出功率,可以將十幾個或幾十個單管激光器芯片集成封裝、形成激光器巴條,將多個巴條堆疊起來可形成激光器二維疊陣,激光器疊陣的光功率可以達到千瓦級甚至更高。但是隨著半導體激光器條數(shù)的增加,其光束質(zhì)量將會下降。另外,半導體激光器結(jié)構(gòu)的特殊性決定了其快、慢軸光束質(zhì)量不一致:快軸的光束質(zhì)量接近衍射極限,而慢軸的光束質(zhì)量卻比較差,這使得半導體激光器在工業(yè)應用中受到了很大的限制。要實現(xiàn)高質(zhì)量、寬范圍的激光加工,激光器必須同時滿足高功率和高光束質(zhì)量。因此,現(xiàn)在發(fā)達國家均將研究開發(fā)新型高功率、高光束質(zhì)量的大功率半導體激光器作為一個重要研究方向,以滿足要求更高激光功率密度的激光材料加工應用的需求。
圖2:大功率半導體激光器的光束質(zhì)量與輸出功率之間的關(guān)系以及目前的應用領(lǐng)域。
大功率半導體激光器的關(guān)鍵技術(shù)包括半導體激光芯片外延生長技術(shù)、半導體激光芯片的封裝和光學準直、激光光束整形技術(shù)和激光器集成技術(shù)。
(1) 半導體激光芯片外延生長技術(shù)
大功率半導體激光器的發(fā)展與其外延芯片結(jié)構(gòu)的研究設計緊密相關(guān)。近年來,美、德等國家在此方面投入巨大,并取得了重大進展,處于世界領(lǐng)先地位。首先,應變量子阱結(jié)構(gòu)的采用,提高了大功率半導體激光器的光電性能,降低了器件的閾值電流密度,并擴展了GaAs基材料系的發(fā)射波長覆蓋范圍。其次,采用無鋁有源區(qū)提高了激光芯片端面光學災變損傷光功率密度,從而提高了器件的輸出功率,并增加了器件的使用壽命。再者,采用寬波導大光腔結(jié)構(gòu)增加了光束近場模式的尺寸,減小了輸出光功率密度,從而增加了輸出功率,并延長了器件壽命。目前,商品化的半導體激光芯片的電光轉(zhuǎn)換效率已達到60%,實驗室中的電光轉(zhuǎn)換效率已超過70%,預計在不久的將來,半導體激光器芯片的電光轉(zhuǎn)換效率能達到85%以上。
(2)半導體激光芯片的封裝和光學準直
激光芯片的冷卻和封裝是制造大功率半導體激光器的重要環(huán)節(jié),由于大功率半導體激光器的輸出功率高、發(fā)光面積小,其工作時產(chǎn)生的熱量密度很高,這對芯片的封裝結(jié)構(gòu)和工藝提出了更高要求。目前,國際上多采用銅熱沉、主動冷卻方式、硬釬焊技術(shù)來實現(xiàn)大功率半導體激光器陣列的封裝,根據(jù)封裝結(jié)構(gòu)的不同,又可分為微通道熱沉封裝和傳導熱沉封裝。
圖3:半導體激光金屬焊接在汽車工業(yè)中的應用。
表1:不同激光熔覆方法的比較。
半導體激光器的特殊結(jié)構(gòu)導致其光束的快軸方向發(fā)散角非常大,接近40°,而慢軸方向的發(fā)散角只有10°左右。為了使激光長距離傳輸以便于后續(xù)光學處理,需要對光束進行準直。由于半導體激光器發(fā)光單元尺寸較小,目前,國際上常用的準直方法是微透鏡準直。其中,快軸準直鏡通常為數(shù)值孔徑較大的微柱非球面鏡,慢軸準直鏡則是對應于各個發(fā)光單元的微柱透鏡。經(jīng)過快慢軸準直后,快軸方向的發(fā)散角可以達到8mrad,慢軸方向的發(fā)散角可以達到30mrad。
轉(zhuǎn)載請注明出處。