光纖放大器不但可對光信號進行直接放大,同時還具有實時、高增益、寬帶、在線、低噪聲、低損耗的全光放大功能,是新一代光纖通信系統(tǒng)中必不可少的關(guān)鍵器件。光纖放大器一般都由增益介質(zhì)、泵浦光和輸入輸出耦合結(jié)構(gòu)組成。目前光纖放大器主要有摻鉺光纖放大器、半導體光放大器和光纖拉曼放大器三種,根據(jù)光纖放大器在光纖線路中的位置和作用,一般分為中繼放大、前置放大和功率放大三種。
光纖放大器(Optical Fiber Ampler,簡寫OFA)是指運用于光纖通信線路中,實現(xiàn)信號放大的一種新型全光放大器。在目前實用化的光纖放大器中主要有摻鉺光纖放大器(EDFA)、半導體光放大器(SOA)和光纖拉曼放大器(FRA)等,其中摻鉺光纖放大器以其優(yōu)越的性能現(xiàn)已廣泛應(yīng)用于長距離、大容量、高速率的光纖通信系統(tǒng)、接入網(wǎng)、光纖CATV網(wǎng)、軍用系統(tǒng)(雷達多路數(shù)據(jù)復接、數(shù)據(jù)傳輸、制導等)等領(lǐng)域,作為功率放大器、中繼放大器和前置放大器。
摻鉺光纖放大器工作原理
摻鉺光纖放大器是利用摻鉺光纖這一活性介質(zhì),當泵浦光輸入到EDF中時,就可以將大部分處于基態(tài)的Er3+抽運到激發(fā)態(tài)上,處于激發(fā)態(tài)的Er3+又迅速無輻射地轉(zhuǎn)移到亞穩(wěn)態(tài)上,由于Er3+在亞穩(wěn)態(tài)上的平均停留時間為10ms,因此很容易在亞穩(wěn)態(tài)與基態(tài)之間形成粒子數(shù)反轉(zhuǎn),此時,信號光子通過摻鉺光纖,在受激輻射效應(yīng)作用下產(chǎn)生大量與自身完全相同的光子,使信號光子迅速增多,這樣在輸出端就可以得到被不斷放大的光信號。
摻鉺光纖放大器應(yīng)用
自80年代末至90年代初研制成摻鉺光纖放大器(EDFA),并開始應(yīng)用于1.55mm頻段的光纖通信系統(tǒng)以來,推動了光纖通信向全光傳輸方向發(fā)展,且目前EDFA的技術(shù)開發(fā)和商品化最成熟;應(yīng)用廣泛的C波段EDFA通常工作在1530~1565nm光纖損耗最低的窗口,具有輸出功率大、增益高、與偏振無關(guān)、噪聲指數(shù)低、放大特性與系統(tǒng)比特率和數(shù)據(jù)格式無關(guān),且同時放大多路波長信號等一系列的特性,在長途光通信系統(tǒng)中得到了廣泛的應(yīng)用。
摻鉺光纖放大器的不足是C-Band EDFA的增益帶寬只有35nm,僅覆蓋石英單模光纖低損耗窗口的一部分,制約了光纖固有能夠容納的波長信道數(shù);然而隨著因特網(wǎng)技術(shù)的迅速發(fā)展,要求光纖傳輸系統(tǒng)的傳輸容量要不斷地擴大,面對傳輸容量的擴大,目前主要有三種解決途徑:(1)增加每個波長的傳輸速率;(2)減少波長間距;(3)增加總的傳輸帶寬。
對于第一種辦法,如果速率提高到10Gbit/s將帶來新的色散補償問題,況且現(xiàn)在的電子系統(tǒng)還存在著所謂"電子瓶頸"效應(yīng)問題。
第二種辦法如果將信號間距從100GHz降低到50GHz或25GHz將給系統(tǒng)帶來四波混頻(FWM)等非線性效應(yīng),且要求系統(tǒng)采用波長穩(wěn)定技術(shù)。
新的光纖放大器如L波段的EDFA是增加總的傳輸帶寬的一種,它將EDFA工作波長由C波段1530~1560nm擴展到L波段1570~1605nm,使EDFA的放大增益譜擴展了一倍。盡管L波段EDFA的波長覆蓋了EDF增益譜的尾部,但仍可與性能先進的C波段EDFA產(chǎn)品相媲美:例如兩者的基本結(jié)構(gòu)相類似,大多數(shù)C波段EDFA的設(shè)計和制造技術(shù)仍可應(yīng)用于L波段EDFA研制;L波段EDFA有較小的輻射和吸收以及較低的平均反轉(zhuǎn)因子,增益波動系數(shù)遠小于C波段EDFA,所存在的是L波段EDFA的EDF較長帶來無源光纖損耗較大,放大噪聲稍大等不足。
非線性光纖放大器(OFA)
非線性O(shè)FA是利用光纖的非線性效應(yīng)實現(xiàn)對信號光放大的一種激光放大器。當光纖中光功率密度達到一定閾值時,將產(chǎn)生受激拉曼散射(SRS)或受激布里淵散射(SBS),形成對信號光的相干放大。非線性O(shè)FA可相應(yīng)分為拉曼光纖放大器(SRA)和布里淵光纖放大器(BRA)。目前研制出的SRA尚未商用化。
OFA的研制始于80年代,并在90年代初取得重大突破。在現(xiàn)代光通信系統(tǒng)設(shè)計中,如何有效地提高光信號傳輸距離,減少中繼站數(shù)目,降低系統(tǒng)成本,一直是人們不斷探索的目標。OFA是解決這一問題的關(guān)鍵器件,它的研制和改進在全球范圍內(nèi)仍方興未艾。
隨著密集波分復用(DWDM)技術(shù)、光纖放大技術(shù),包括摻鉺光纖放大器(EDFA)、分布喇曼光纖放大器(DRFA)、半導體放大器(SOA)和光時分復用(OTDM)技術(shù)的發(fā)展和廣泛應(yīng)用,光纖通信技術(shù)不斷向著更高速率、更大容量的通信系統(tǒng)發(fā)展,而先進的光纖制造技術(shù)既能保持穩(wěn)定、可靠的傳輸以及足夠的富余度,又能滿足光通信對大寬帶的需求,并減少非線性損傷。
光纖放大器的主要應(yīng)用和市場
密集波分復用系統(tǒng)在光纖傳輸系統(tǒng)中已成為技術(shù)主流,作為DWDM系統(tǒng)核心器件之一的光纖放大器在其應(yīng)用中將得到迅速發(fā)展,這主要是由于光纖放大器有足夠的增益帶寬,它與WDM技術(shù)相結(jié)合可迅速簡便地擴大現(xiàn)有光纜系統(tǒng)的通信容量,延長中繼距離。在光纖接入網(wǎng)中,盡管用戶系統(tǒng)的距離較短,但用戶網(wǎng)的分支太多,需要用光纖放大器來提高光信號的功率以補償光分配器造成的光損耗和提高用戶的數(shù)量,降低用戶網(wǎng)的建設(shè)成本。
在光纖CATV系統(tǒng)中,隨著其規(guī)模的不斷擴大,其鏈路的傳輸距離不斷增長,光路的傳輸損耗也不斷增加,將光纖放大器應(yīng)用在光纖CATV系統(tǒng)中不但可提高光功率,補償鏈路的損耗,增加光用戶終端,而且簡化了系統(tǒng)結(jié)構(gòu),降低了系統(tǒng)成本。
近年來,隨著信息和通信技術(shù)的飛速發(fā)展,光纖放大器(無線信號放大器)的研究和發(fā)展又進一步擴大了增益帶寬,將光纖通信系統(tǒng)推向了高速率、大容量、長距離方向發(fā)展。由于光纖放大器的獨特性能,光纖放大器在DWDM傳輸系統(tǒng)、光纖CATV和光纖接入網(wǎng)中的應(yīng)用將越來越廣泛
轉(zhuǎn)載請注明出處。