在科幻小說《星際旅行》中,星球戰(zhàn)士可以在某一地點突然消失,而瞬間之后卻出現(xiàn)在遙遠的另一地點。那么,現(xiàn)實生活中是否存在某種手段,可以把某一客體以最快捷的方式輸送到遙遠的另一地點呢?如果有,那是一種什么樣的手段呢?量子信息學(xué)研究,正是實現(xiàn)這種“遠程傳送”幻想前的最腳踏實地的基礎(chǔ)理論與實驗研究——要想實現(xiàn)遠程瞬間傳送,必須找到相距遙遠的兩個客體之間的感應(yīng)狀態(tài)以及信息隱性傳輸?shù)姆绞?。這一研究,首先必須從微觀世界的分子、原子、粒子層面做起。在微觀世界里,存在著一種“量子糾纏”現(xiàn)象,即不論兩個粒子間的距離多遠,一個粒子的任何變化都會影響到另一個粒子,讓另一個粒子獲得“感應(yīng)”,這種現(xiàn)象也被愛因斯坦稱為“遙遠地點間幽靈般的相互作用”。于是,“多粒子糾纏態(tài)的制備與操縱”成為近年來國際上量子物理與量子信息研究領(lǐng)域的熱點。
量子信息傳輸?shù)倪h景意義還不僅在于星際旅行,它對研制功能強大的超級計算機和實現(xiàn)‘萬無一失’的通信保密系統(tǒng),也具有非常誘人的應(yīng)用前景。
現(xiàn)在的信息時代,研究量子計算機帶來最大的好處就是用同樣速度計算機來化解400位自然數(shù)的話,用世界最快的計算機要算100億年,如果量子計算機研制出來只要算一分鐘。所以這會給我們的信息帶來新的革命。
量子密碼術(shù)是密碼術(shù)與量子力學(xué)結(jié)合的產(chǎn)物,它利用了系統(tǒng)所具有的量子性質(zhì)。首先想到將量子物理用于密碼術(shù)的是美國科學(xué)家威斯納。威斯納于1970年提出,可利用單量子態(tài)制造不可偽造的“電子鈔票”。但這個設(shè)想的實現(xiàn)需要長時間保存單量子態(tài),不太現(xiàn)實。貝內(nèi)特和布拉薩德在研究中發(fā)現(xiàn),單量子態(tài)雖然不好保存但可用于傳輸信息。1984年,貝內(nèi)特和布拉薩德提出了第一個量子密碼術(shù)方案,稱為BB84方案,由此迎來了量子密碼術(shù)的新時期。1992年,貝內(nèi)特又提出一種更簡單,但效率減半的方案,即B92方案。量子密碼術(shù)并不用于傳輸密文,而是用于建立、傳輸密碼本。根據(jù)量子力學(xué)的不確定性原理以及量子不可克隆定理,任何竊聽者的存在都會被發(fā)現(xiàn),從而保證密碼本的絕對安全,也就保證了加密信息的絕對安全。最初的量子密碼通信利用的都是光子的偏振特性,目前主流的實驗方案則用光子的相位特性進行編碼。目前,在量子密碼術(shù)實驗研究上進展最快的國家為英國、瑞士和美國、中國。英國國防研究部于1993年首先在光纖中實現(xiàn)了基于BB84方案的相位編碼量子密鑰分發(fā),光纖傳輸長度為10公里。這項研究后來轉(zhuǎn)到英國通訊實驗室進行,到1995年,經(jīng)多方改進,在30公里長的光纖傳輸中成功實現(xiàn)了量子密鑰分發(fā)。與偏振編碼相比,相位編碼的好處是對光的偏振態(tài)要求不那么苛刻。在長距離的光纖傳輸中,光的偏振性會退化,造成誤碼率的增加。然而,瑞士日內(nèi)瓦大學(xué)1993年基于BB84方案的偏振編碼方案,在1.1公里長的光纖中傳輸1.3微米波長的光子,誤碼率僅為0.54%,并于1995年在日內(nèi)瓦湖底鋪設(shè)的23公里長民用光通信光纜中進行了實地表演,誤碼率為3.4%。1997年,他們利用法拉第鏡消除了光纖中的雙折射等影響因素,使得系統(tǒng)的穩(wěn)定性和使用的方便性大大提高,被稱為“即插即用”的量子密碼方案。美國洛斯阿拉莫斯國家實驗室,創(chuàng)造了目前光纖中量子密碼通信距離的新紀(jì)錄。他們采用類似英國的實驗裝置,通過先進的電子手段,以B92方案成功地在長達48公里的地下光纜中傳送量子密鑰,同時他們在自由空間里也獲得了成功。1999年,瑞典和日本合作,在光纖中成功地進行了40公里的量子密碼通信實驗。在中國,中科院物理所于1995年以BB84方案在國內(nèi)首次做了演示性實驗,華東師范大學(xué)用B92方案做了實驗,但也是在距離較短的自由空間里進行的。1997年,中國科大潘建偉在世界上首次成功地實現(xiàn)了量子態(tài)隱形傳送。2000年,中科院物理所與研究生院合作,在850納米的單模光纖中完成了1.1公里的量子密碼通信演示性實驗。2003年中國科大潘建偉在世界上首次成功實現(xiàn)了自由量子態(tài)隱形傳輸以及糾纏交換;首次實現(xiàn)了未來長程量子通訊的關(guān)鍵器件——糾纏態(tài)等很多理論和實踐上的突破,在多光子糾纏操縱方面在國際上處于領(lǐng)先地位。2005年底,中國科大郭光燦等在國際上首次解決了量子密鑰分配過程的穩(wěn)定性問題,經(jīng)由實際通信光路實現(xiàn)了125公里單向量子密鑰分配,成為迄今國際上公開報道的最長距離的實用光纖量子密碼系統(tǒng)。
量子力學(xué)的研究進展導(dǎo)致了新興交叉學(xué)科——量子信息學(xué)的誕生,為信息科學(xué)展示了美好的前景。人類在20世紀(jì)能夠精確地操控航天飛機和搬動單個原子,但卻未能掌握操控量子態(tài)的有效方法。在21世紀(jì),人類應(yīng)積極致力于量子技術(shù)的開發(fā),推動科學(xué)和技術(shù)更迅速地發(fā)展。
轉(zhuǎn)載請注明出處。