蘇州大學(xué)激光加工中心 江蘇 蘇州 215021
1 引言
1.1 復(fù)合焊的優(yōu)點
激光具有高亮度、高方向性、高單色性、高相干性及特殊的空間分布特性等優(yōu)點,可獲得高達1011W/cm2的聚焦功率密度,其巨大的能量集中在非常小的范圍內(nèi),能迅速將材料局部升溫至極高的溫度,并能以較高的冷卻速度進行冷卻,因此激光加工技術(shù)已成為一種無與倫比的材料加工方法[1]。激光材料加工技術(shù)在工業(yè)領(lǐng)域應(yīng)用的廣泛程度,已然成為衡量一個國家工業(yè)水平高低的重要標志。激光焊接技術(shù)與傳統(tǒng)焊接技術(shù)相比,具有焊縫深寬比高、熱影響區(qū)窄、焊接接頭質(zhì)量佳、生產(chǎn)效率高等突出優(yōu)點,因此逐漸得到科研人員及企業(yè)的關(guān)注。常見的激光焊接技術(shù)包含單純激光焊接、激光填絲焊接和激光-電弧復(fù)合焊接(Hybrid Laser Arc Welding)。由于激光和熔化極氣體保護焊(Gas metal Arc Welding, GMAW)能加速焊接工藝,降低成本,并提高焊接質(zhì)量。所以激光焊接和復(fù)合焊在汽車制造、航空航天領(lǐng)域中已經(jīng)得到了廣泛的應(yīng)用。但在造船行業(yè)中應(yīng)用還不是很普遍,尤其是在中國的造船上,還在大量的使用人力進行焊接,不僅污染環(huán)境、而且勞動強度大、危害比較大、精度和效率也無法保證。
激光復(fù)合焊結(jié)合了激光焊和MAG焊或其它氣體保護焊兩種技術(shù)的優(yōu)勢。復(fù)合焊主要的優(yōu)點是:焊接穿透的深度深而且焊道窄,焊接速度快,熱輸入低,熱影響區(qū)小,熱變形??;焊縫質(zhì)量高,外觀佳,物理性能好,返工率低,焊縫底部控制好,可實現(xiàn)單面焊雙面成形。并且確保了焊縫的金屬結(jié)構(gòu)與機械屬性。
閱讀全文,點擊鏈接:http://onlinethisweek.com/newebook/201611/index.php#page/3
參考文獻
[1] Liu Shunhong. Laser Manufacturing Technology[M]. Wuhan: Huazhong University of Science and Technology Press, 2011, 1~4.
劉順洪. 激光制造技術(shù)[M]. 武漢:華中科技大學(xué)出版社, 2011, 1~4.
[2] W. Xu, D. Westerbaan, S.S. Nayak, et al.. Tensile and fatigue properties of fiber laser welded high strength low alloy and DP980 dual-phase steel joints [J]. Materials and Design, 2013, 43: 373~383.
[3] W. M. Steen. Arc augmented laser processing of materials [J], Journal of Applied Physics, 1980, 51(11): 5636~5641.
[4] Xiao Rongshi, Wu Shikai. Progress on Laser-arc hybrid welding[J], Chinese Journal of Lasers, 2008, 35(11): 1680~1685.
肖榮詩, 吳世凱. 激光-電弧復(fù)合焊接的研究進展[J], 中國激光, 2008, 35(11): 1680~1685.
[5] Ji Yipeng, Chen Jiaqing, Jiao Xiangdong, et al.. Laser-arc hybrid welding technology[J], Welding Technology, 2009, 38(12): 1~7.
姬宜朋, 陳家慶, 焦向東等. 激光-電弧復(fù)合熱源焊接技術(shù)[J], 焊接技術(shù), 2009, 38(12): 1~7.
[6] Cui Li, Zhang Yanchao, He Dingyong, et al.. Research progress of high power fiber laser welding[J], Laser Technology, 2012, 36(2): 154~159.
崔麗,張彥超,賀定勇等.高功率光纖激光焊接的研究進展[J], 激光技術(shù), 2012, 36(2): 154~159.
[7] X.N. Wang, L.X. Du, H.S. Di, et al.. Effect of deformation on continuous cooling phase transformation behaviors of 780MPa Nb-Ti ultra-high strength steel[J], Steel Research International, 2012, 82(12): 1417~1424.
[8] Song Yongjun, Wang Xiaonan, Xu Zhaoguo, et al.. Development of 700MPa grade ultra-high strength heavy duty automobile carriage strip[J], Journal of Mechanical Engineering, 2011, 47(22): 69~73.
宋勇軍, 王曉南, 徐兆國等. 700MPa級超高強重載汽車車廂板的研制[J], 機械工程學(xué)報, 2011,
47(22): 69~73.
[9] Li Xiaoyan, Wu Chuansong, Li Wushen. Study on the progress of welding science and technology in China[J], Journal of Mechanical Engineering, 2012, 48(6): 19~30.
李曉延, 武傳松, 李午申. 中國焊接制造領(lǐng)域?qū)W科發(fā)展研究[J], 機械工程學(xué)報, 2012, 48(6): 19~30.
[10]Liu Jichang, Li Lijun, Zhu Xiaodong, et al.. Discussion on laser welding combined with other heat resources[J], Laser Technology, 2003, 27(5): 486~489.
劉繼常, 李力鈞, 朱小東等. 試析幾種激光復(fù)合焊接技術(shù)[J], 激光技術(shù), 2003, 27(5): 486~489.
[11]S. Katayama, Y. Kawahito, M. Mizutani. Latest progress in performance and understanding of laser welding[J], Physics Procedia, 2012, 39: 8~16.
[12]C. M. Allen. A brief review of recent developments in laser welding processes for ferritic pipe steels[J], Australasian Welding Journal, 2007, 52(4): 21~22.
[13]Steve Shi, David Howse. Laser welding and laser--MAG compound welding of shipbuilding[J], Electric Welding Machine, 2007, 37(6): 32~39.
石功奇, David Howse. 船用鋼結(jié)構(gòu)的激光焊接以及激光-MAG復(fù)合焊接[J], 電焊機, 2007, 37(6): 32~39.
[14]Huang Jian, Gao Zhiguo, Cai Yan, et al.. High power CO2 laser welding of shipbuilding steel[J], Electric Welding Machine, 2008, 38(3): 7~11.
黃堅, 高志國, 蔡艷等. 船用鋼板的高功率CO2激光焊接[J], 電焊機, 2008, 38(3): 7~11.
[15]J.M. Ni, Z.G. Li, J. Huang, et al.. Strengthening behavior analysis of weld metal of laser hybrid welding for microalloyed steel[J], Materials and Design, 2010, 31(8): 4876~4880.
[16]D. Petring, C. Fuhrmann, N. Wolf, et al.. Investigations and applications of laser-arc hybrid welding from thin sheets up to heavy section components[A]. 22nd International Congress on Applications of Lasers and Electro Optics[C]. Congress proceedings, 2003: 1~10.
[17]S.H. Zhang, Y.F. Shen, H.J. Qiu. The technology and welding joint properties of hybrid laser-TIG welding on thick plate[J], Optics & Laser Technology, 2013, 48: 381~388.
[18]Z.J. Liu, M. Kutsuna, L.Q. Sun. CO2 laser-MAG hybrid welding of 590MPa high strength steel[J], 溶接學(xué)會論文集, 2006, 24(1): 17~25.
[19]By C. Roepke, S. Liu. Hybrid Laser arc welding of HY-80 Steel [J], Welding Journal, 2009, 88(Supplementary Issue): 159~167.
[20]By C. Roepke, S. Liu, S. Kelly, et al.. Hybrid laser arc welding process evaluation on DH36 and EH36 steel[J], Welding Journal, 2010, 89: 140~150.
[21]Zeng Xiaoyan, Gao Ming, Yan jun. Effects of shielding gas in laser-arc hybrid welding[J], Chinese Journal of Lasers, 2011, 38(6): 1~7.
曾曉雁, 高明, 嚴軍. 保護氣體對激光-電弧復(fù)合焊接的影響[J], 中國激光, 2011, 38(6): 1~7.
[22]P. Sathiya, M.K. Mishra, R.Soundararajan, et al.. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel[J], Optics & Laser Technology, 2013, 45: 46-55.
[23]G.Tani, G. Campana, A. Fortunato, et al.. The influence of shielding gas in hybrid Laser-MIG welding[J], Applied Surface Science, 2007, 253: 8050~8053.
[24]L.H. Hu, J. Huang, Z.G. Li, et al.. Effects of preheating temperature on cold cracks, microstructures and properties of high power laser hybrid welded 10Ni3CrMoV steel[J], Materials and Design, 2011, 32: 1931~1939.
[25]Hu Peipei, Wang Chunming, Hu Xiyuan. Research progress of fiber laser welding and fiber laser-arc hybrid welding[J], Welding, 2011, 7: 40~45.
胡佩佩, 王春明, 胡席遠. 光纖激光及其復(fù)合焊接研究進展[J], 焊接, 2011, 7: 40~45.
[26]M. Shin, K. Nakata. Single pass full penetration welding of high-tensile steel thick-plate using 4kW fiber laser and MAG arc hybrid welding process[J], 溶接學(xué)會論文集, 2009, 27(2): 80-84.
[27]X. Cao, P. Wanjara, J. Huang, et al.. Hybrid fiber laser – Arc welding of thick section high strength low alloy steel[J], Materials and Design, 2011, 32: 3399~3413.
[28]S. Grünenwalda, T. Seefeld, F. Vollertsen. Solutions for joining pipe steels using laser-GMA-hybrid welding processes[J], Physics Procedia, 2010, 5: 77~87.
[29]G. Turichin, E. Valdaytseva, I. Tzibulsky, et al.. Simulation and technology of hybrid welding of thick steel partswith high power fiber laser[J], Physics Procedia, 2011, 12: 646~655.
[30]M. Rethmeier, S. Gook, M. Lammers, et al.. Laser-hybrid welding of thick plates up to 32mm using a 20kW fiber laser[J], Quarterly Journal of the Japan Welding Society, 2009, 27(2): 74~79.
[31]V. Caccese, P.A. Blomquist, K.A. Berube, et al.. Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes[J], Marine Structures, 2006, 19: 1~22.
[32]Wang Qiming. Breakthroughs and developments of semiconductor laser in China[J], Chinese Journal of Lasers, 2010, 37(9): 2190~2197.
王啟明. 中國半導(dǎo)體激光器的歷次突破與發(fā)展[J], 中國激光, 2010, 37(9): 2190~2197.
[33]Wang Yonggang, Ma Xiaoyu. The application and present situation of lasers in the automobile industry[J], Journal of Applied Optics, 2004, 25(5): 1-2.
王勇剛, 馬驍宇. 激光在汽車工業(yè)中的發(fā)展現(xiàn)狀與應(yīng)用[J]. 應(yīng)用光學(xué), 2004, 25(5): 1-2.
[34]UWE REISGEN。船舶制造中的激光復(fù)合焊[J]. Industrial Laser Solution,2014.10,http://www.industrysourcing.cn/article/302539。
轉(zhuǎn)載請注明出處。