閱讀 | 訂閱
閱讀 | 訂閱
汽車制造

自動駕駛車載激光雷達技術(shù)現(xiàn)狀分析

星之球科技 來源:智能交通前沿科技2020-06-14 我要評論(0 )   

摘要:本報告將自動駕駛領(lǐng)域最為關(guān)鍵的傳感器——激光雷達作為中心,通過調(diào)研其所扮演重要角色的領(lǐng)域——自動駕駛,以及自動駕駛和激光雷達的國內(nèi)外發(fā)展現(xiàn)狀,深入了解...

摘要:本報告將自動駕駛領(lǐng)域最為關(guān)鍵的傳感器——激光雷達作為中心,通過調(diào)研其所扮演重要角色的領(lǐng)域——自動駕駛,以及自動駕駛和激光雷達的國內(nèi)外發(fā)展現(xiàn)狀,深入了解激光雷達的技術(shù)背景。以目前智能車生產(chǎn)廠家所采用的傳感層技術(shù)為切入點,通過了解、掌握這些技術(shù)的特點、基本原理、適用場景、優(yōu)缺點,來進一步深入激光雷達,了解其分類、基本工作原理、主要技術(shù)指標(biāo),對用于智能車的車載激光雷達的主要廠家、產(chǎn)品進行調(diào)研,獲得主流產(chǎn)品的主要性能指標(biāo)參數(shù)、測試數(shù)據(jù)等。

緒論

1.1 研究背景與意義

早期激光雷達主要用于軍事和民用地理測繪(GIS)等領(lǐng)域,比如地質(zhì)測繪、監(jiān)測樹木生長、測量建筑項目進度等。隨著自動駕駛的興起,對于環(huán)境感知要求日趨嚴(yán)格,在自動駕駛架構(gòu)中,傳感層被比作為汽車的“眼睛”,包括車載攝像頭等視覺系傳感器和車載毫米波雷達、車載激光雷達和車載超聲波雷達等雷達系傳感器,其中激光雷達已經(jīng)被廣泛認(rèn)為是實現(xiàn)自動駕駛的必要傳感器。相比于其它類型的自動駕駛傳感器,如攝像頭,激光雷達探測的距離更遠,精度更高。相對于攝像頭而言,激光雷達由于為主動發(fā)射光束,故比較不容易受周圍環(huán)境如弱光、雨雪煙塵的影響,而且攝像頭在進行圖像識別處理時需要消耗大量的處理器能力,而激光雷達產(chǎn)生的三維地圖信息更容易被計算機解析。相比毫米波雷達,激光雷達的分辨率更高,并且毫米波雷達也不適用于行人檢測和目標(biāo)識別等工作。在自動駕駛領(lǐng)域,激光雷達與其它傳感器互為補充,可以有效提高車輛對于周圍環(huán)境感知的準(zhǔn)確度。

本文以目前智能車生產(chǎn)廠家所采用的傳感層技術(shù)為切入點,通過了解、掌握這些技術(shù)的特點、基本原理、適用場景、優(yōu)缺點,來進一步深入研究其中對于自動駕駛最為關(guān)鍵的傳感器——激光雷達,了解其分類、基本工作原理、主要性能指標(biāo),對用于智能車的車載激光雷達的主要廠家、產(chǎn)品進行調(diào)研,獲得主流產(chǎn)品的主要性能指標(biāo)參數(shù)、測試數(shù)據(jù)等。對車載激光雷達進行仿真,不僅能節(jié)省大量的燃料和經(jīng)費,而且不受天氣和場地的限制,因此具有巨大的經(jīng)濟效益。在仿真軟件中,可以靈活地設(shè)置各種參數(shù)、模擬條件,同時也不存在安全隱患,因此具有巨大的社會效益。由于目前國內(nèi)外對于車載激光雷達仿真系統(tǒng)的研究較少,本文拋磚引玉,嘗試歸納、分析上述內(nèi)容,最終得出車載激光雷達仿真系統(tǒng)的主要技術(shù)要求。

1.2 自動駕駛概述

SAE(國際汽車工程師協(xié)會)J3016 文件提出的五級自動駕駛分級方案是當(dāng)前被普遍采用接受的標(biāo)準(zhǔn),將自動駕駛技術(shù)分為 L0 ~ L5 共六個等級。L0 代表沒有自動駕駛加入的傳統(tǒng)人類駕駛,L1 ~ L5 則將自動駕駛的發(fā)展程度進行了分級:

表 1-1 SAE 自動駕駛定義和分級標(biāo)準(zhǔn)

(注:參照[1]中表格修改整理)

無人駕駛專指 L4、L5 階段,即駕駛員不介入的情況下汽車可以完成全自動駕駛的控制動作,指向自動駕駛汽車技術(shù)發(fā)展的最終形態(tài)。

自動駕駛覆蓋 L1 到 L5 整個階段,在 L1、L2 階段,汽車的自動駕駛系統(tǒng)只作為駕駛員的輔助,但能夠持續(xù)地承擔(dān)汽車橫向或縱向某一方面的自主控制完成感知、認(rèn)知、決策、控制、執(zhí)行這一完整過程,其他如預(yù)警提示、短暫干預(yù)的駕駛技術(shù)(ADAS, Advanced Driver Assistance Systems)不能完成這一完整的流程,不在自動駕駛技術(shù)范圍之內(nèi)。即汽車至少在某些具有關(guān)鍵安全性的控制功能方面(如轉(zhuǎn)向、油門或制動)無需駕駛員直接操作即可自動完成控制動作。自動駕駛汽車一般使用機載傳感器、GPS 和其他通信技術(shù)設(shè)備獲得信息,針對安全狀況進行決策規(guī)劃,在某種程度上恰當(dāng)?shù)貙嵤┛刂?。自動駕駛包括無人駕駛。

智能駕駛指搭載先進的智能系統(tǒng)和多種傳感器設(shè)備(包括攝像頭、雷達、導(dǎo)航設(shè)備等),具備復(fù)雜的環(huán)境感知、智能決策、協(xié)同控制和執(zhí)行等功能,可實現(xiàn)安全、舒適、節(jié)能、高效行駛,并最終可替代人來操作。智能駕駛包括自動駕駛以及無人駕駛。

以上三者的關(guān)系可由下圖表示:

圖 1-1 無人駕駛、自動駕駛、智能駕駛關(guān)系圖

1.3 智能車輛國內(nèi)外發(fā)展現(xiàn)狀及趨勢概述

自 1886 年汽車誕生以來,結(jié)構(gòu)逐步成型;1913 年,汽車開始采用流水先生產(chǎn);1932 年,高速公路誕生;20 世紀(jì) 50 年代,被動安全系統(tǒng),如安全帶、安全氣囊出現(xiàn);至此,以底盤、傳動、輪胎、車身、機械為核心技術(shù)的汽車逐漸開始規(guī)模化生產(chǎn),同時,國內(nèi)汽車工業(yè)開始起步。1970 年,F(xiàn)ord 最早裝配防抱死制動系統(tǒng)(ABS, Anti-lock BrakingSystem)這一主動安全系統(tǒng);1995年,Mercedes-Benz 率先配備電子穩(wěn)定系統(tǒng)(ESP,Electronic Stability Program);至此,以發(fā)動機、早期汽車電子技術(shù)、安全系統(tǒng)和節(jié)能為核心技術(shù)的汽車性能不斷優(yōu)化,大量資金和技術(shù)被引入,同時,國內(nèi)汽車工業(yè)全面發(fā)展。2009 年,Google 開啟自動駕駛項目,以汽車電子技術(shù)、自動駕駛、新能源為核心技術(shù)的汽車逐步向智能化、輕量化、電動化、網(wǎng)聯(lián)化、出行方式共享化等方向發(fā)展;自動駕駛作為重要的發(fā)展趨勢之一,將再次徹底改變出行方式。我國汽車工業(yè)起步較晚,但在新能源汽車等領(lǐng)域進展較快,并率先趕上自動駕駛研發(fā)熱潮,有望在汽車產(chǎn)業(yè)發(fā)揮引領(lǐng)作用。

美國在 20 世紀(jì) 80 年代初已經(jīng)開始自動駕駛技術(shù)的軍事化應(yīng)用,歐洲從 80 年代中期開始研發(fā)自動駕駛車輛,更多強調(diào)單車自動化、智能化的研究,日本的自動駕駛研發(fā)略晚于歐美,更多關(guān)注于采用智能安全系統(tǒng)降低事故發(fā)生率,以及采用車間通信方式輔助駕駛。在初期,自動駕駛研發(fā)在歐美日已呈現(xiàn)『產(chǎn)學(xué)研』相結(jié)合的特點,開發(fā)測試了不同程度自動化、智能化的車輛,進入 21 世紀(jì),美國國防高等研究計劃署(DARPA, Defense Advanced Research Projects Agency)舉辦的挑戰(zhàn)賽進一步提高了自動駕駛的社會關(guān)注度,激發(fā)了相關(guān)從業(yè)者的研發(fā)熱情。由于深度學(xué)習(xí)算法的引入,自動駕駛技術(shù)有了爆炸性的突破。2009 年,Google 布局自動駕駛,引發(fā)了新一輪的產(chǎn)業(yè)熱潮,更多的科技企業(yè)加入市場爭奪中。2020 年前后,成為主要汽車廠商和科技企業(yè)承諾推出完全自動駕駛車輛的時間節(jié)點。

自上世紀(jì) 90 年代起,國內(nèi)各高校和研究機構(gòu)已經(jīng)陸續(xù)開展自動駕駛的研發(fā)工作,推出多個測試車型,其中國防科技大學(xué)于 1992 年研制出第一款自動駕駛汽車CITAVT-Ⅰ 型。2009 年以來,國家自然科學(xué)基金委員會舉辦『中國智能車未來挑戰(zhàn)賽』,吸引多個高校和研究機構(gòu)參與,為自動駕駛技術(shù)的交流和發(fā)展起到了良好的促進作用,在此期間,一汽、北汽等傳統(tǒng)車企也逐步布局。自國務(wù)院在 2015 年發(fā)布《中國制造 2025》起,以自動駕駛技術(shù)為重點的智能網(wǎng)聯(lián)汽車成為未來汽車發(fā)展的重要戰(zhàn)略方向,大批初創(chuàng)企業(yè)投身自動駕駛領(lǐng)域;2016 年,中國工信部裝備工業(yè)司汽車處處長表示,正和警方合作起草自動化駕駛道路測試標(biāo)準(zhǔn)化的規(guī)定;北汽、上汽、長安等車企相繼公布自動駕駛戰(zhàn)略規(guī)劃,國內(nèi)自動駕駛集中爆發(fā),多個車企公布自動駕駛的戰(zhàn)略規(guī)劃;2017 年,《汽車產(chǎn)業(yè)中長期發(fā)展規(guī)劃》發(fā)布;籌建智能網(wǎng)聯(lián)汽車分技術(shù)委員會,制定產(chǎn)業(yè)技術(shù)標(biāo)準(zhǔn);百度公布 Apollo 計劃,還有更多的初創(chuàng)企業(yè)脫穎而出,獲得巨額投資,可以說,自動駕駛產(chǎn)業(yè)已經(jīng)進入新技術(shù)最為火爆的中場階段。

1.4 車載激光雷達國內(nèi)外發(fā)展現(xiàn)狀及趨勢概述

目前,全球最大的車載激光雷達公司——Velodyne LiDAR 的前身是硅谷科技公司 Velodyne,它在 Google 布局無人駕駛汽車之前就開始在車載激光雷達產(chǎn)業(yè)發(fā)力,之后與 Google 合作,成為了車載激光雷達產(chǎn)業(yè)的龍頭。其包含了專注于音頻設(shè)備的 Velodyne Acoustics 公司和專注于海洋問題解決方案的 Velodyne Marine 公司,同樣地,Velodyne 在 2016 年將 Velodyne LiDAR 作為一家獨立的公司剝離出來,這時正處于世界范圍內(nèi)車載激光雷達相關(guān)技術(shù)飛速發(fā)展時期。其旗下的 HDL-64E 型機械激光雷達被廣泛采用于自動駕駛車輛的測試中,不過其高昂的價格和低生產(chǎn)率也提醒各個科技巨頭車載激光雷達的低成本化和量產(chǎn)化相當(dāng)關(guān)鍵,這也正是 Tesla 一直不采用這種『3D 激光雷達』方案,而是堅持采用『毫米波雷達 + 攝像頭』方案的原因。目前 Velodyne LiDAR 已經(jīng)推出成本更低、線數(shù)更多的 128 線的 VLS-128 型固態(tài)激光雷達,這意味著這款激光雷達有更高的分辨率、安全性以及更低的成本,并且可以實現(xiàn)量產(chǎn)。然而,『3D 激光雷達 + 高精度導(dǎo)航地圖 + 云計算』被認(rèn)為是未來理想的綜合性解決方案,也就是說,從發(fā)展趨勢看,就汽車智能駕駛領(lǐng)域,『毫米波雷達 + 攝像頭』方案終將隨著車載激光雷達的成本下降而被逐漸取代。

不過,在 Velodyne 推出 VLS-128 之前,整體車載激光雷達市場上的趨勢都是往低線束化、固態(tài)化發(fā)展,也就是往減少激光雷達線束發(fā)展,同時也從機械型轉(zhuǎn)為固態(tài)型,比如 Quanergy 公司就在 2016 年 CES 展會上推出了與 Delphi 公司共同研發(fā)的新產(chǎn)品 S3,號稱全球首款固態(tài)激光雷達,就連 Velodyne 公司本身也在推出混合或固態(tài)的低線束激光雷達。因為這樣做可以降低成本,但是需要用數(shù)量來彌補線數(shù)的不足,也體現(xiàn)出未來的技術(shù)路線未定,產(chǎn)業(yè)龍頭 Velodyne LiDAR 也不能確定到底是多線束激光雷達還是多激光雷達耦合。Velodyne LiDAR 認(rèn)為對于一輛在復(fù)雜環(huán)境中高速行駛的自動駕駛汽車來說,HDL-64 的性能還不夠保證安全,更高線程的激光雷達不僅可以配合一些必要的設(shè)備保證安全,還可以讓自動駕駛汽車將不再需要任何其它探測障礙的傳感器。但是 Velodyne LiDAR 的競爭對手 Luminar 公司也在做低線束固態(tài)激光雷達,其認(rèn)為由于激光擴散的原因,距離越遠,精準(zhǔn)度越低。所以,絕大多數(shù)的自動駕駛公司在使用最先進的激光雷達的情況下,還是會選擇添加其他種類的傳感器。各大車載激光雷達公司之間的爭論也是行業(yè)的技術(shù)現(xiàn)狀之一,至于車載激光雷達技術(shù)之后如何發(fā)展,還需要看各科技公司的研發(fā)情況以及實際測試的結(jié)果。

從以上對國外車載激光雷達技術(shù)現(xiàn)狀的分析中能夠得到的統(tǒng)一趨勢有低成本化、固態(tài)化、量產(chǎn)化,但是 Velodyne LiDAR 推出更高線束的激光雷達和其他科技廠商推出低線束激光雷達的行為并不矛盾,他們的整體方向依然是要實現(xiàn)激光雷達的更高分辨率和精準(zhǔn)度,進一步保證無人駕駛的安全性,只不過前者傾向于使用更強大的設(shè)備,后者傾向于使用多激光雷達耦合并降低成本。同時,低線束激光雷達對高線束激光雷達可以起到補充的作用。

實際上國內(nèi)車載激光雷達的發(fā)展不比國外起步晚,北科天繪于 2005 年成立于北京,和 Velodyne 的激光雷達計劃幾乎同時開始,然而目前來看,國外的車載激光雷達水平較高。盡管自動駕駛市場需求量極大,激光雷達仍面臨著成本高、量產(chǎn)難的問題。制造門檻高,且應(yīng)用領(lǐng)域較窄(汽車、資源勘測),使該類產(chǎn)品供應(yīng)商相對較少,缺乏針對車規(guī)級的成熟量產(chǎn)方案。要推動激光雷達解決方案落地,供應(yīng)商勢必要完整掌握硬件的核心技術(shù),以便控制成本,并以配套的算法推動市場接受其方案。目前,實現(xiàn)激光雷達低成本的路線有:犧牲一定的精度,使用全固態(tài)、低線束激光雷達降低制作成本;提高生產(chǎn)率,通過量產(chǎn)帶來的規(guī)模效益攤薄產(chǎn)品成本。速騰聚創(chuàng)、禾賽科技等公司均提供自動駕駛的『硬件 + 算法』一體化解決方案,希望以低線束、低成本、量產(chǎn)化的激光雷達產(chǎn)品打通市場;用于機器人、無人機的激光雷達產(chǎn)商北醒光子、思嵐科技也在向自動駕駛布局。盡管部分廠商已有成品,并與其它初創(chuàng)公司達成合作,但能否打通主機廠和 Tier1(一級供應(yīng)商)尚存疑。相較而言,在2016年,全球頂尖廠商Velodyne-LiDAR在中國的銷售額已達到 1500 萬美元。

1.5 本章小結(jié)

本章將自動駕駛領(lǐng)域最為關(guān)鍵的傳感器——激光雷達作為切入點,通過調(diào)研其所扮演重要角色的領(lǐng)域——自動駕駛,以及自動駕駛和激光雷達的國內(nèi)外發(fā)展現(xiàn)狀,從行業(yè)和科研等多方面了解激光雷達的技術(shù)背景。

智能車輛的傳感層技術(shù)分析

2.1 傳感器介紹

在自動駕駛技術(shù)來臨之前,車用傳感器即用于汽車電子技術(shù)、作為車載電腦(ECU)的輸入裝置,能夠?qū)l(fā)動機、底盤、車身各個部分的運作工況信息以信號方式傳輸給車載電腦,從而使汽車運行達到最佳狀態(tài)。ADAS(高級輔助駕駛系統(tǒng))的廣泛應(yīng)用,使攝像頭等用于環(huán)境感知的傳感器進入公眾視野,作為輔助,這些傳感器將汽車周邊的環(huán)境信息輸入到相應(yīng)的系統(tǒng)模塊中,進行判斷,提前給駕駛員預(yù)警或提供緊急防護,但不同系統(tǒng)的傳感器間關(guān)系孤立,數(shù)據(jù)單獨處理,信息尚未形成融合。在自動駕駛汽車中,定位、雷達、視覺等傳感器協(xié)作融合,能夠以圖像、點云等形式輸入收集到的環(huán)境數(shù)據(jù),并通過算法的提取、處理和融合,進一步形成完整的汽車周邊駕駛態(tài)勢圖,為駕駛行為決策提供依據(jù)。

除了激光雷達之外,本文再對攝像頭、毫米波雷達、超聲波傳感器、定位傳感器這部分重要傳感器作簡要介紹:

攝像頭:

用攝像頭代替人眼對目標(biāo)(車輛、行人、交通標(biāo)志)進行識別、跟蹤和測量,感知到汽車周邊的障礙物以及可駕駛區(qū)域,理解道路標(biāo)志的語義,從而對當(dāng)下的駕駛場景進行完整描述。攝像頭必須先識別再測距,如果無法識別則無法測距。相對于其它傳感器,攝像頭的價格相對低廉,有著識別車道線、車輛等物體的基礎(chǔ)能力,在汽車高級輔助駕駛市場已被規(guī)模使用。依據(jù)不同的圖像檢測原理,可分為單目攝像頭和雙目攝像頭,根據(jù)芯片類型又可分為 CCD 攝像頭和 CMOS 攝像頭,等等。其優(yōu)點在于攝像頭是目前唯一能夠辨別物體的傳感器。

但是攝像頭同時具有三個缺點:缺點一是逆光或光影復(fù)雜的地方難以使用;缺點二在于依賴于算法,能否辨別物體完全依賴樣本的訓(xùn)練,樣本未覆蓋的物體將無法辨別,比如 Mobileye 在中國道路上應(yīng)用,識別超載運貨車的成功率不超過 80%;缺點三在于攝像頭對于行人的識別具有不穩(wěn)定性,因為行人不同于車輛,動作、服裝、身體各部分變化要素很多,而且還要與街上的建筑、汽車、樹木等背景圖案區(qū)分開來,比如 Mobileye 在日本、德國、美國、以色列等國市區(qū)的測試結(jié)果顯示,行人的成功檢測率為 93.5%,距離實現(xiàn)完全無人駕駛還有很大差距,再如穿著吉祥物套裝或著裝顏色與背景相似的人或搬運東西的人極有可能無法識別。因此,攝像頭的物體識別功能無可比擬,但由于依賴樣本識別物體,以及識別行人具有不穩(wěn)定性,攝像頭應(yīng)用于測距領(lǐng)域無法保障 100% 的穩(wěn)定性,在自動駕駛領(lǐng)域脫離激光雷達使用只能應(yīng)用于 ADAS 而不能應(yīng)用于完全的無人駕駛。

從硬件方面看,計算機視覺所需的工業(yè)攝像頭在技術(shù)層面相對成熟,具有較高的圖像穩(wěn)定性、高傳輸能力和抗干擾能力,且單個攝像頭成本已降到 200 元以下,因此單車可以配備 6~8 個攝像頭覆蓋不同角度,天風(fēng)證券預(yù)測,2020 年國內(nèi)前后裝攝像頭需求量為 4184 萬個。

毫米波雷達

發(fā)射 1~10 毫米的電磁波,根據(jù)反射波的時間差及強度等來測量距離,汽車毫米波雷達的頻段主要在 24 GHz 和 77 GHz。其優(yōu)點在于性價比較高,探測距離遠,精度較高,穿透霧、灰塵的能力強,能夠全天候全天時工作,在很多高檔轎車?yán)锒加袘?yīng)用;缺點是行人的反射波容易被其他物體反射波埋沒,難以分辨,無法識別行人,例如采用毫米波雷達和攝像頭的感知系統(tǒng)實現(xiàn)自動駕駛的 Tesla,在行人較多的鬧市區(qū)會自動鎖定自動駕駛功能。因此,毫米波雷達在測距領(lǐng)域具有較高性價比,但是其無法探測行人是一個致命弱點,只能應(yīng)用于自適應(yīng)巡航系統(tǒng)等 ADAS 系統(tǒng)。目前毫米波雷達市場由國外廠商壟斷,國內(nèi)主要的零部件供應(yīng)商正在致力于車載毫米波雷達的國產(chǎn)化。79 GHz 毫米波雷達作為未來發(fā)展趨勢,能更有效地發(fā)揮自動駕駛傳感器所需的性能。

超聲波傳感器

發(fā)射振動頻率高于聲波的機械波,根據(jù)反射波測量距離。其優(yōu)點在于探測物體范圍極廣,能夠探測絕大部分物體,且有較高穩(wěn)定性;缺點是一般只能探測 10 米以內(nèi)的距離,無法進行遠距離探測。因此,超聲波雷達廣泛應(yīng)用于倒車?yán)走_,在自動駕駛領(lǐng)域常常作為短距離雷達,應(yīng)用如自動泊車輔助系統(tǒng)。

定位傳感器

可以獲得自身相對于全局的位置信息。其優(yōu)點在于技術(shù)較為成熟,能夠?qū)崿F(xiàn)在全局視角的定位功能;缺點在于無法獲得周圍障礙物的位置信息。往往需要與前幾個探障類傳感器搭配使用。

2.2 傳感器分類

智能車輛的傳感器可以分為視覺傳感器、定位傳感器、雷達傳感器、聽覺傳感器和姿態(tài)傳感器。其中視覺傳感器可以分為單目攝像頭、雙目攝像頭、夜視紅外攝像頭;定位傳感器可以分為慣性導(dǎo)航系統(tǒng)、衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)、高精度地圖、實時動態(tài)(RTK)差分系統(tǒng);雷達傳感器可以分為激光雷達和毫米波雷達;聽覺傳感器可以分為語音識別、聲音定位入口;姿態(tài)傳感器可以分為車載診斷系統(tǒng)(OBD)、CAN 總線、慣性測量單元(IMU)、發(fā)動機等汽車工況傳感器。主要的傳感器為激光雷達、毫米波雷達、攝像頭、超聲波雷達、GNSS 輔助傳感器,其中 GNSS 輔助傳感器包括慣性導(dǎo)航系統(tǒng)和 RTK 差分系統(tǒng)。

傳感器分類圖如下:

圖 2-1 智能車輛傳感器分類圖

需要說明的是,以上提到的智能車傳感器并不一定會同時出現(xiàn)在一輛車上。某種傳感器存在與否,取決于這輛車需要完成什么樣的任務(wù)。如果只需要完成高速公路的自動駕駛,比如 Tesla 在 Model S 里使用的 Autopilot 自動輔助駕駛功能是不需要使用激光雷達的;但如果需要完成城區(qū)路段的自動駕駛,沒有激光雷達,僅靠視覺傳感器是很困難的。

2.3 傳感器比較

不同傳感器各有優(yōu)劣。無論是『毫米波雷達 + 攝像頭』方案還是『3D 激光雷達』方案都不具備獨當(dāng)一面的能力。前者距離實現(xiàn)需要解決的問題是如何達到識別車輛、識別人體 100% 的成功率以及如何達到識別任何物體并測量距離 100% 的成功率;而后者距離實現(xiàn)需要解決的問題是大雨和大雪等惡劣條件下的調(diào)試以及逐漸擺脫對于高精度地圖的依賴。兩種方案看似競爭,實則互補。技術(shù)上的不同方向很有可能形成兩種方案的互相啟發(fā)與互相補充??梢?,自動駕駛汽車要安全運作,必須保證多傳感器協(xié)同工作和信息冗余。因此,多種傳感器往往需要協(xié)同工作,優(yōu)勢互補,共同組成自動駕駛的環(huán)境感知解決方案。

表 2-1 智能車輛主要傳感器比較

2.4 本章小結(jié)

本章以目前智能車生產(chǎn)廠家所采用的傳感層技術(shù)為切入點,通過了解、掌握這些技術(shù)的特點、基本原理、適用場景、優(yōu)缺點并進行比較,進一步說明激光雷達在自動駕駛領(lǐng)域中為何了扮演不可替代的角色。

激光雷達技術(shù)分析

3.1 激光雷達分類

對于激光雷達,可以分別按照探測體系、應(yīng)用方向、線束、基于機械/電子部件分類如下:

圖 3-1 激光雷達分類圖

3.2 激光雷達工作原理

LiDAR,是英文 Light Detection And Ranging 的縮寫,中文名稱為激光雷達。激光雷達作為在激光測距雷達基礎(chǔ)上發(fā)展起來的一項主動成像雷達技術(shù),如圖3-2 所示,通過發(fā)射和接收激光束,分析激光遇到目標(biāo)對象后的折返時間,計算出到目標(biāo)對象的相對距離,并利用此過程中收集到的目標(biāo)對象表面大量密集的點的三維坐標(biāo)、反射率和紋理等信息,快速得到出被測目標(biāo)的三維模型以及線、面、體等各種相關(guān)數(shù)據(jù),建立三維點云(Point Cloud)圖,繪制出環(huán)境地圖,以達到環(huán)境感知的目的。由于光速非???,飛行時間可能非常短,因此要求測量設(shè)備具備非常高的精度。從效果上來講,激光雷達維度(線束)越多,測量精度越高,安全性就越高。

相比于可見光、紅外線等傳統(tǒng)被動成像技術(shù),激光雷達技術(shù)具有如下顯著特點:一方面,它顛覆傳統(tǒng)了二維投影成像模式,可采集目標(biāo)表面深度信息,得到目標(biāo)相對完整的空間信息,經(jīng)數(shù)據(jù)處理重構(gòu)目標(biāo)三維表面,獲得更能反映目標(biāo)幾何外形的三維圖形,同時還能獲取目標(biāo)表面反射特性、運動速度等豐富的特征信息,為目標(biāo)探測、識別、跟蹤等數(shù)據(jù)處理提供充分的信息支持、降低算法難度;另一方面,主動激光技術(shù)的應(yīng)用,使得其具有測量分辨率高,抗干擾能力強、抗隱身能力強、穿透能力強和全天候工作的特點。

圖 3-2 激光測距原理

大多數(shù)激光雷達系統(tǒng)主要包括四部分:激光器、光學(xué)掃描器,光電檢測器,導(dǎo)航系統(tǒng)。本節(jié)將簡單說明各部分的原理、功能以及技術(shù)指標(biāo)。

3.2.1 激光器

激光和發(fā)光二極管都起源于 20 世紀(jì) 60 年代,激光是受激輻射的光放大而來,兩者都使用二極管產(chǎn)生不同形式的光,當(dāng)電通過發(fā)光二極管時,發(fā)出非相干的可見光,光射向所有的方向;激光器使用高度專業(yè)化的二極管,其在電磁光譜的光學(xué)部分處或附近產(chǎn)生能量。當(dāng)這種能量對人眼可見時,我們將其稱為“光”,當(dāng)不可見時,我們將其稱為“輻射”,這與放射性物質(zhì)的輻射不同。來自激光器的能量通過稱為受激發(fā)射的原子過程被放大到極高的強度,最后將能量變成高度定向的波束,意味著所有的單個能量波被對齊,變?yōu)椤巴唷辈⑶已叵嗤姆较蛞苿?。舉個例子的話,發(fā)光二極管的能量就像在游樂場的保險杠車;而激光的能量就像賽車,并且它們會同時向同一方向沖出去。發(fā)光二極管照明廣泛,而激光精確定位,最適合需要聚焦和精確度的任務(wù)。

根據(jù)激光輸出功率和波長、脈沖持續(xù)時間的不同,國際電工委員會(IEC)將激光分為 4 類:

Category 4 是最高強度的激光,可以造成火災(zāi)以及對皮膚造成傷害,同時存在漫反射危險,也就是說激光表面的脈沖反射也是危險

Category 3 同樣對人類有危害,但是在長時間直射眼睛的情況下才是有危害的,一般人眨眼的頻率會保證眼睛在短時間內(nèi)直射不會受害。但是不會造成火災(zāi)以及對皮膚造成傷害。

Category 2 肉眼可見,但是通常直射眼睛會不舒服,長時間直射也不安全。

Category 1m 是第二安全的類型,如果觀察者使用望遠鏡等光學(xué)放大裝置直接觀察到直徑為 1m 的光束就不安全了。

Category 1 最安全的激光類型,這個類別包括所有的激光或激光系統(tǒng),它們的光輻射水平在任何曝光條件下都不會高于眼睛的暴露極限。

3.2.2 光學(xué)掃描器

激光雷達成像的速度取決于外部反射的光子經(jīng)光學(xué)掃描部件進入系統(tǒng)的速度。市場上存在許多掃描的方法以改變方位角和仰角,如雙振蕩平面鏡、雙軸掃描鏡、多面鏡等。光學(xué)掃描器決定了激光雷達的分辨率和檢測范圍(角度)[2]。圖 3-3 表示 HDL-64E 的光學(xué)掃描部件的結(jié)構(gòu)。

注:本圖參照[3]中圖片

圖 3-3 激光雷達光學(xué)掃描器部分

3.2.3 光電檢測器

光電檢測器即讀取和記錄反射回到激光雷達的信號的設(shè)備。主要有兩種光電檢測技術(shù),分別為固態(tài)檢測器(Solid State Detector)和光電倍增管[2]。

3.2.4 導(dǎo)航系統(tǒng)

當(dāng)激光雷達安裝在移動的平臺,如衛(wèi)星和飛機上時,它需要其它設(shè)備的協(xié)助以確定設(shè)備當(dāng)前的位置和轉(zhuǎn)向信息,這樣才能保證激光雷達測量數(shù)據(jù)的可用性。衛(wèi)星導(dǎo)航系統(tǒng)(GNSS, Global Navigation Satellite System)可以提供準(zhǔn)確的地理位置信息,慣性測量單元(IMU, Inertial Measurement Unit )則記錄當(dāng)前位置激光雷達的姿態(tài)和轉(zhuǎn)向信息。GNSS 和 IMU 配合使用,可以將激光雷達測量點由相對坐標(biāo)系轉(zhuǎn)換為絕對坐標(biāo)系上的位置點,從而應(yīng)用于不同的系統(tǒng)中[2]。

3.3 激光雷達技術(shù)指標(biāo)

3.3.1 線束

為獲得盡量詳細(xì)的點云圖,激光雷達必須要快速采集周圍環(huán)境的數(shù)據(jù)。一種方式是提高發(fā)射機/接收機的采集速度,每個發(fā)射機在每秒內(nèi)可以發(fā)送十萬以上組脈沖,也就是說在 1 秒內(nèi),有 100,000 組脈沖完成一次發(fā)射/返回的循環(huán)。復(fù)雜的激光雷達有高達 64 組發(fā)射機/接收機,組就是線(Channel)的意思,線表示激光雷達系統(tǒng)包含獨立的發(fā)射機/接收機的數(shù)目。多線的配置使得激光雷達在每秒內(nèi)可構(gòu)建高達百萬的數(shù)據(jù)點。

圖 3-4 示例多線激光雷達掃描的點云,圖中每個同心圓表示一組激光器掃描的點云。對于兩組相鄰的激光器而言,其垂直間隔角為常量(下文“垂直角分辨率”將介紹到)。因此距離越遠,相鄰激光器掃描的點云同心圓間隔越大。也就是說,距離越遠,數(shù)據(jù)的保真度越低。激光雷達對于近處的物體有更高的分辨率[2]。

注:本圖參照[4]中圖片

圖 3-4 Velodyne HDL-64 激光雷達系統(tǒng)掃描的點云圖

3.3.2 方位角

方位角(Field of View, FOV)包括水平方位角和垂直方位角,指的是激光雷達在水平和垂直方向的檢測角度。

上面提到線的概念,然而在實際應(yīng)用中,64 線對于構(gòu)建周圍環(huán)境精確的點云是遠遠不夠的,它只能在有限范圍內(nèi)達到足夠的精度。但是在制造工藝上,把線數(shù)提高到 64 組以上,將大大提高設(shè)備的成本,因此不少激光雷達系統(tǒng)采用旋轉(zhuǎn)鏡頭,如圖 3-5,激光雷達的主體部分固定在旋轉(zhuǎn)馬達的基座上,工作時不斷旋轉(zhuǎn),即可對周圍 360°進行掃描,也就是說這些激光雷達的水平方位角為 360°。

垂直方位角指的是激光雷達垂直方向的檢測角度,一般在40°以內(nèi)[2]。VelodyneHDL-64E 幾個激光發(fā)射單元之間有一定間隙,如圖 3-6 所示。

注:本圖參照[5]中圖 4.2

圖 3-5 Velodyne HDL-64E 水平掃描示意圖

注:本圖參照[5]中圖 4.1

圖 3-6 Velodyne HDL-64E 垂直掃描示意圖

3.3.3 掃描幀頻

激光雷達點云數(shù)據(jù)更新的頻率。對于混合固態(tài)激光雷達來說,也就是旋轉(zhuǎn)鏡每秒鐘旋轉(zhuǎn)的圈數(shù),單位 Hz 。例如,10 Hz 即旋轉(zhuǎn)鏡每秒轉(zhuǎn) 10 圈,同一方位的數(shù)據(jù)點更新 10 次[2]。

3.3.4 角分辨率

角分辨率分為水平角分辨率和垂直角分辨率。水平角分辨率是指水平方向上掃描線間的最小間隔度數(shù)。它是隨掃描幀頻的變化而變化,轉(zhuǎn)速越快,則水平方向上掃描線的間隔越大,水平角分辨率越大。垂直角分辨率指的是垂直方向上兩條掃描線的間隔度數(shù)[2]。

3.3.5 測量精度

激光雷達的數(shù)據(jù)手冊中的測量精度(Accuracy)常表示為,例如 ±2 cm 的形式。精度表示設(shè)備測量位置與實際位置偏差的范圍[2]。

3.3.6 探測距離

激光雷達的最大測量距離。在自動駕駛領(lǐng)域應(yīng)用的激光雷達的測距范圍普遍在100~200 m 左右[2]。

3.3.7 數(shù)據(jù)率

激光雷達每秒鐘生成的激光點數(shù),例如:40 線掃描幀頻為 20 Hz 的激光雷達,水平角分辨率是 0.45°(每一圈每束激光掃描 800 次)。因此每秒鐘生成的激光點數(shù)和為:4020800 = 640, 000 points/sec[2]。

3.4 激光雷達測試分析

市場上車載激光雷達種類、型號繁雜,其中 Velodyne HDL-64E 是最受歡迎的激光雷達之一,其所使用的激光是 Category 1 類型,以大約 10 赫茲的頻率快速旋轉(zhuǎn)。同時,每個激光脈沖的波長為 905 納米,平均功率為 2 毫瓦,相當(dāng)于是標(biāo)準(zhǔn) 10 瓦 LED 大燈泡在近光燈設(shè)置下的功率輸出的 0.02%。這意味著任何單個激光束將在大約 1 毫秒內(nèi)掃過眼睛,平均功率小于普通的激光指示器。并且由于每個單獨的激光器以不同的方向和角度安裝,所以多個激光器不能一次同時直射眼睛并增加功率。即使行人有意盯著 Velodyne 傳感器,低功耗和快速旋轉(zhuǎn)的組合情況下也是 Category 1 級,十分安全。

另外,它由激光發(fā)射機、光學(xué)接收機、轉(zhuǎn)臺和信息處理系統(tǒng)等組成,激光器將電脈沖變成光脈沖發(fā)射出去,光接收機再把從目標(biāo)反射回來的光脈沖還原成電脈沖,送到顯示器。

其基本參數(shù)、實際輸出數(shù)據(jù)格式和結(jié)構(gòu)如表 3-1、表3-2 和圖 3-7 所示:

表 3-1 Velodyne HDL-64E型激光雷達參數(shù)

表 3-2 激光雷達輸出數(shù)據(jù)格式表

圖 3-7 Velodyne HDL-64E 激光雷達組成示意圖

利用有幸從別處取得的 HDL-64E 的數(shù)據(jù),繪制得到點云圖的其中一幅如下:

圖 3-8 HDL-64E 實際數(shù)據(jù)所繪制的點云圖

根據(jù)表 3-2 可得,HDL-64E 所輸出的數(shù)據(jù)為點的 X,Y,Z 坐標(biāo),激光強度以及激光器的編號,由于對激光雷達的仿真不需要模擬出激光強度的效果,所以只需要對其他四個數(shù)據(jù)進行獲取。

至于點云圖的繪制,是對實際數(shù)據(jù)處理之后按照 Z 軸坐標(biāo)的不同顯示,不過實際數(shù)據(jù)和仿真采集數(shù)據(jù)的不同在于,實際數(shù)據(jù)中的點的坐標(biāo)都是符合激光雷達數(shù)據(jù)規(guī)范的,仿真需要考慮的是將采集到的點篩選出符合規(guī)范的,再顯示出來。下一節(jié)將會分別對模塊仿真、數(shù)據(jù)處理、數(shù)據(jù)仿真進行詳細(xì)說明。

3.5 本章小結(jié)

本章通過了解激光雷達的分類、基本工作原理、主要技術(shù)指標(biāo),對用于智能車的車載激光雷達的主要產(chǎn)品進行調(diào)研,獲得主流產(chǎn)品的主要性能指標(biāo)參數(shù)、測試數(shù)據(jù)等。

4.1 模塊仿真

本文第 3.2 節(jié)詳細(xì)說明了激光雷達的主要組成模塊,在對激光雷達仿真時,可以考慮按模塊分類并仿真。

實際的激光雷達是先發(fā)射激光束再接收返回的激光束而獲取到點的坐標(biāo),并且其中還要依靠光學(xué)掃描器和光學(xué)檢測器才能完成這一復(fù)雜的過程,而仿真的激光雷達只需要模擬激光器,也就是激光發(fā)射裝置,進而獲取到點的坐標(biāo),最后繪制成圖即可。根據(jù)仿真經(jīng)驗,可以考慮使用 OpenGL 中透視投影的一點透視的方式設(shè)置相機視角,然后通過編寫 shader 從相機中獲取點數(shù)據(jù)。如圖 3-1 所示,透視投影的視線(投影線)是從視點(觀察點)出發(fā),所有視線從視點出發(fā),視線是不平行的。所以可以用 OpenGL 的配置透視投影的相機來充當(dāng)激光雷達的觀察方式,然后從相機中設(shè)法取出在該視角下觀察場景的位置信息即可完成激光雷達的模擬。那么如何設(shè)置相機呢?首先,在使用 OpenGL 的透視投影的方式獲取點的數(shù)據(jù)時,根據(jù) HDL-64E 的水平方位角為 360°,垂直方位角為 26.8°,掃描最長距離為 120 m,考慮使用四個相機拼合的方式實現(xiàn),其中每個相機上仰角度為 2°,下俯角度為 24.9°,水平張角為 90°,遠處裁剪處為 120,然后獲取數(shù)據(jù)。

圖 4-1 透視投影原理

根據(jù)以上的分析,大致可以將激光雷達的仿真分為兩個模塊,一是激光發(fā)射模塊,其中包括了對獲取到的數(shù)據(jù)的處理過程(篩選過程);二是建模模塊,用于對激光雷達仿真的精度測試和算法驗證。

4.2 數(shù)據(jù)處理

由于本文只對于仿真激光雷達提供一個方向,具體的實現(xiàn)方法是多元的,接下來只對其中一種方法在仿真 HDL-64E 時的實現(xiàn)過程作大致說明。由于我們需要取出點的位置信息,而在 shader 關(guān)于頂點信息的只有 gl_Vertex 這個內(nèi)置變量。經(jīng)過用例檢測后,發(fā)現(xiàn) gl_Vertex 的頂點信息是該點相對于當(dāng)前模型的相對坐標(biāo),若想將其變化為我們需要的位置信息還需進行矩陣變換。根據(jù)公式

相對位置 = 相機的模型矩陣 × 模型的模擬矩陣 × 目標(biāo)點相對模型的相對坐標(biāo)

將模型的投影矩陣右乘 gl_Vertex,再右乘傳進的相機的投影矩陣,便得出此點相對于相機視點(即激光雷達的位置)的相對坐標(biāo)。值得注意的是,由于本算法是在 OSG 中運行的,因為 OSG 中矩陣的右乘等于 OpenGL 的左乘,故造成這里的公式和上文提到的公式不同。

4.3 數(shù)據(jù)傳輸

數(shù)據(jù)傳輸?shù)姆椒ㄓ泻芏喾N,比如共享內(nèi)存、以文件形式輸出、利用網(wǎng)絡(luò)傳輸?shù)?,本?jié)只對實現(xiàn)數(shù)據(jù)傳輸?shù)钠渲幸环N的實現(xiàn)過程加以說明。一般來說,激光雷達仿真需要實現(xiàn)動態(tài)的實時場景顯示和點云圖顯示。動態(tài)的實時場景顯示,可以考慮多加一個相機進行顯示。而點云圖的繪制可以根據(jù)四個相機取到的數(shù)據(jù),不以文件形式輸出,而是將數(shù)據(jù)寫進內(nèi)存,直接從內(nèi)存里獲得點數(shù)據(jù)信息并利用 OpenGL 繪制出來。從內(nèi)存里直接取數(shù)據(jù)則需要做到共享內(nèi)存,也就是要滿足進程間的通信,在渲染場景時將數(shù)據(jù)寫在一個內(nèi)存地址里,繪制點云圖時利用這個內(nèi)存地址找到點數(shù)據(jù)的存儲地址并取出數(shù)據(jù),這樣的方式可以使得渲染和繪制的效率都提高,要做到動態(tài)繪制時也更為方便,但進程間的先后關(guān)系需要做一定的控制,否則容易出現(xiàn)繪制時內(nèi)存地址里沒有數(shù)據(jù)或者是錯誤數(shù)據(jù)的情況。

4.4 本章小結(jié)

經(jīng)過歸納、分析前文中的內(nèi)容,最終得出智能車輛車載激光雷達仿真系統(tǒng)的主要技術(shù)要求以及針對于主流產(chǎn)品 Velodyne HDL-64E 的一種基本的仿真思路。


轉(zhuǎn)載請注明出處。

制造業(yè)激光激光技術(shù)自動駕駛
免責(zé)聲明

① 凡本網(wǎng)未注明其他出處的作品,版權(quán)均屬于激光制造網(wǎng),未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用。獲本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使 用,并注明"來源:激光制造網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)責(zé)任。
② 凡本網(wǎng)注明其他來源的作品及圖片,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本媒贊同其觀點和對其真實性負(fù)責(zé),版權(quán)歸原作者所有,如有侵權(quán)請聯(lián)系我們刪除。
③ 任何單位或個人認(rèn)為本網(wǎng)內(nèi)容可能涉嫌侵犯其合法權(quán)益,請及時向本網(wǎng)提出書面權(quán)利通知,并提供身份證明、權(quán)屬證明、具體鏈接(URL)及詳細(xì)侵權(quán)情況證明。本網(wǎng)在收到上述法律文件后,將會依法盡快移除相關(guān)涉嫌侵權(quán)的內(nèi)容。

網(wǎng)友點評
0相關(guān)評論
精彩導(dǎo)讀