2017年9月蘋(píng)果公司推出十周年紀(jì)念版新機(jī)型iPhone X,其搭載的3D感測(cè)人臉識(shí)別成為業(yè)界熱捧的智能手機(jī)新功能。iPhone X一經(jīng)推出后,盡管此前多次被曝出銷(xiāo)量不佳,但近期蘋(píng)果發(fā)布的2018財(cái)年第二季度財(cái)報(bào)消除了市場(chǎng)疑慮,財(cái)報(bào)顯示共售出5220萬(wàn)部,高于去年同期水平。并且由于iPhone X的成功,蘋(píng)果預(yù)期在2018年將前置3D感測(cè)導(dǎo)入iPad及全部新款iPhone產(chǎn)品中。在此趨勢(shì)下,全球安卓陣營(yíng)手機(jī)廠商必將加快跟進(jìn)采用3D感測(cè)技術(shù),使得3D感測(cè)在未來(lái)5年內(nèi)極可能成為智能手機(jī)的標(biāo)配。
iPhone X采用的3D感測(cè)核心元件包括點(diǎn)陣投影器、接近傳感器和泛光照明器等。如圖1所示,iPhone X正面屏幕上方的“劉海”部分,也就是安裝3D感測(cè)系統(tǒng)與前置相機(jī)的地方,由左往右依次是NIR攝像頭傳感器、接近傳感器&泛光照明器、光譜傳感器、RGB攝像頭以及點(diǎn)陣投影器等。
圖1 iPhone X采用的3D感測(cè)元件布局圖
iPhone X紅外點(diǎn)陣投影器通過(guò)采用VCSEL(垂直腔面發(fā)射激光器)二極管配合主動(dòng)式衍射光學(xué)元件和折疊光學(xué)元件得以實(shí)現(xiàn)。圖2即展示了這款點(diǎn)陣投影器的封裝結(jié)構(gòu):其中VCSEL芯片安裝在一塊氮化鋁材質(zhì)的DPC陶瓷基板上,氮化鋁基板又貼裝于一個(gè)HTCC陶瓷基座底部。主動(dòng)式衍射光學(xué)元件的電極和陶瓷基板中的IC通過(guò)組件側(cè)方的金屬連接器相連。系統(tǒng)工作時(shí),由VCSEL芯片發(fā)出紅外光束,經(jīng)過(guò)折疊光學(xué)元件引導(dǎo)至主動(dòng)式衍射光學(xué)元件,再由主動(dòng)式衍射光學(xué)元件將光束分成30000個(gè)點(diǎn)光束發(fā)射而出。這種非常獨(dú)特的裝配方案獲得了最優(yōu)化的熱管理性能,并能為所有的光學(xué)元件提供更高的對(duì)準(zhǔn)精度。
圖2 iPhone X紅外點(diǎn)陣投影器封裝結(jié)構(gòu)圖
蘋(píng)果iPhone X泛光照明器和ToF接近傳感器則位于主揚(yáng)聲器上方,采用光學(xué)式LGA封裝,如圖3所示。泛光照明器采用了近紅外VCSEL芯片,亦貼裝于一塊氮化鋁材質(zhì)的DPC陶瓷基板上,通過(guò)發(fā)射輔助紅外光,確保系統(tǒng)在暗光甚至黑暗環(huán)境中正常運(yùn)行。ToF接近傳感器則負(fù)責(zé)探測(cè)用戶(hù)和手機(jī)直接的距離,當(dāng)用戶(hù)離手機(jī)太近,例如當(dāng)用戶(hù)在接聽(tīng)電話(huà)時(shí),會(huì)自動(dòng)關(guān)閉屏幕。
圖3 iPhone X泛光照明器及接近傳感器封裝結(jié)構(gòu)圖
通過(guò)解剖iPhone X 3D感測(cè)核心元件,我們發(fā)現(xiàn)其2顆大功率VCSEL芯片均封裝在高導(dǎo)熱氮化鋁材質(zhì)的DPC陶瓷基板上,以實(shí)現(xiàn)機(jī)械支撐、垂直電連接(絕緣)、高效散熱、輔助發(fā)光等功能。
我們認(rèn)為采用這種獨(dú)特的封裝形式是基于以下兩點(diǎn):其一,3D感測(cè)用VCSEL芯片是垂直結(jié)構(gòu),功率均在1W以上,但光電轉(zhuǎn)化效率只有大約30%,大部分變成了熱,需要盡快發(fā)散出去;其次,VCSEL芯片功率密度很高,需要考慮芯片和基板熱膨脹失配導(dǎo)致的應(yīng)力問(wèn)題。因此,實(shí)現(xiàn)高效散熱、熱電分離及熱膨脹系數(shù)匹配成為VCSEL元件封裝基板選擇的重要考量。
DPC陶瓷基板極大地滿(mǎn)足了VCSEL元件的這種封裝要求。DPC陶瓷基板又稱(chēng)直接鍍銅陶瓷基板,是一種結(jié)合薄膜線(xiàn)路與電鍍制程的技術(shù),在薄膜金屬化的陶瓷板上采用影像轉(zhuǎn)移方式制作線(xiàn)路,再采用穿孔電鍍技術(shù)形成高密度雙面布線(xiàn)間的垂直互連。由于采用了半導(dǎo)體微加工技術(shù),基板線(xiàn)寬可降低為10~30um,表面平整度高(<0.3um),線(xiàn)路對(duì)位精準(zhǔn)度高(±1%),再配以高絕緣、高導(dǎo)熱的氮化鋁陶瓷基體,因此DPC陶瓷基板具備了高導(dǎo)熱、高絕緣、高線(xiàn)路精準(zhǔn)度、高表面平整度及熱膨脹系數(shù)與芯片匹配等諸多特性,在高功率VCSEL元件封裝中迅速占據(jù)了重要地位。圖4即展示了采用DPC陶瓷基板的VCSEL封裝結(jié)構(gòu)。
圖4 采用DPC陶瓷基板的VCSEL封裝結(jié)構(gòu)示意圖
進(jìn)一步解剖iPhone X紅外點(diǎn)陣投影器,發(fā)現(xiàn)安裝VCSEL芯片的氮化鋁基板與HTCC陶瓷基座是采用有機(jī)粘結(jié)物進(jìn)行貼合,如圖5所示。這種采用兩塊不同材質(zhì)陶瓷元件進(jìn)行粘合的方式,初衷是方便進(jìn)行光學(xué)對(duì)準(zhǔn),但顯然增大了點(diǎn)陣投影器的組裝難度和可靠性(硅膠長(zhǎng)期受熱下的老化),筆者認(rèn)為這恰好驗(yàn)證了HTCC陶瓷封裝方案帶來(lái)的局限性:該方案是權(quán)衡了高導(dǎo)熱及低成本要求后的無(wú)奈之舉。因?yàn)镠TCC陶瓷基座如采用氮化鋁材質(zhì),則成本極高,且工藝不成熟,如采用氧化鋁材質(zhì),則導(dǎo)熱能力又達(dá)不到要求,故而選擇了將氮化鋁底板與HTCC基座粘貼在一起的權(quán)衡方案。
圖5 采用DPC陶瓷基板貼裝HTCC陶瓷基座的VCSEL封裝圖
此外,大功率VCSEL芯片必會(huì)采用共晶工藝,以實(shí)現(xiàn)與底部基板的高可靠連接,而采用絲印工藝的HTCC陶瓷基座線(xiàn)路解析度及表面平整度顯然達(dá)不到共晶工藝要求。因此,筆者認(rèn)為,當(dāng)前iPhone X紅外點(diǎn)陣投影器中VCSEL元件選用的封裝基座方案仍然有很大的改善空間。
鑒于這種潛在的問(wèn)題,3D成型DPC陶瓷基板將是一種更優(yōu)的解決方案。如圖6所示,3D成型DPC陶瓷基板底部材質(zhì)采用的是高導(dǎo)熱氮化鋁陶瓷,且在陶瓷基板表面一體成型獲得金屬邊框,形成陶瓷-金屬3D密封結(jié)構(gòu)。相比于iPhone X采用的氮化鋁陶瓷與HTCC基座貼裝的方案,其優(yōu)點(diǎn)在于:
其一,基板底部線(xiàn)路層仍然保留了DPC陶瓷基板特有的高解析度、高平整度及高可靠垂直互聯(lián)等技術(shù)優(yōu)勢(shì),適用于垂直共晶焊接,消除了LTCC/HTCC等厚膜基板尺寸精度不高,線(xiàn)路粗糙等缺陷;
其二,基板制作過(guò)程中即實(shí)現(xiàn)了金屬邊框與陶瓷基板的一體成型,緊密結(jié)合,避免了后期組裝過(guò)程中額外的粘貼工序、配位精度等問(wèn)題,以及膠水老化帶來(lái)的可靠性問(wèn)題;
其三,基體材質(zhì)可以根據(jù)封裝需要,在高導(dǎo)熱氮化鋁、高強(qiáng)度氮化硅、高純氧化鋁等不同陶瓷材質(zhì)中任意選擇,充分實(shí)現(xiàn)了熱電分離結(jié)構(gòu);
其四,制作工藝與現(xiàn)有DPC陶瓷基板方案大致相同,產(chǎn)品開(kāi)發(fā)周期短,一致性好,成本低。
圖6 采用3D成型DPC陶瓷基板的VCSEL封裝示意圖
由此可見(jiàn),該封裝結(jié)構(gòu)導(dǎo)熱性能好,氣密性高,圖案設(shè)計(jì)靈活,金屬邊框采用模塊化制造,利于大規(guī)模生產(chǎn),尤其是成本低,新產(chǎn)品開(kāi)發(fā)周期短,為高功率VCSEL器件的高可靠封裝提供了更完善的解決方案。
作為全球手機(jī)當(dāng)之無(wú)愧的龍頭,蘋(píng)果率先在其智能手機(jī)上大規(guī)模采用3D感測(cè)技術(shù),徹底激活3D感測(cè)消費(fèi)類(lèi)市場(chǎng)。蘋(píng)果大手筆支付3.9億美金給菲尼薩(Finisar)增產(chǎn)VCSEL,DOE光學(xué)元件供應(yīng)商艾邁斯半導(dǎo)體(AMS)2017業(yè)績(jī)、股票的雙逆襲,歐司朗(Osram)全資收購(gòu)美國(guó)VCSEL制造商Vixar等市場(chǎng)行為證實(shí)了全球?qū)?D感測(cè)VCSEL市場(chǎng)前景的高度認(rèn)可。
據(jù)悉,除了前置3D感測(cè),蘋(píng)果后續(xù)機(jī)型有望增加后置3D感測(cè)技術(shù),這意味著VCSEL 3D傳感器市場(chǎng)需求將成倍增加。由于后置VCSEL 3D傳感器比前端3D傳感器需要更高功率,以便達(dá)到更遠(yuǎn)投射距離,必將帶來(lái)更大的散熱及成本挑戰(zhàn)。長(zhǎng)期而言,因應(yīng)物聯(lián)網(wǎng)及云端運(yùn)算等應(yīng)用發(fā)展趨勢(shì),VCSEL 3D感測(cè)市場(chǎng)成長(zhǎng)潛力龐大,尤其是應(yīng)用于AR、汽車(chē)夜視、自動(dòng)駕駛、工業(yè)視覺(jué)等領(lǐng)域?qū)⒏厪V泛。